THE FREE RADICAL REACTIVITY OF METHYLATED FURANS AND THIOPHENES

Miroslav Janda, Jan Šrogl, Ivan Stibor, Mojmír Němec and Pavla Vopatrná Department of Organic Chemistry, institute of Chemical Technology, 166 28 Prague 6, Suchbátarova 5, ČSSR

(Received in UK 8 January 1973; accepted for publication 17 January 1973)

Recently we have studied the reactivity of methylated furans¹ and thiophenes² towards electrophilic as well as nucleophilic agents.Very little data on the free radical reactivity of these compounds exists and most of this deals with the radical bromination with N-bromosuccinimide in the presence of dibenzoyl peroxide³. Unfortunately these data disagree with the theoretical predictions of free radical reactivity. We have studied the free radical methylation of compounds I - IX with diacetyl peroxide.This method has been used several times for the study of free radical reactivity of substituated benzenes⁴⁻⁷ and its mechanism is well known⁸.

Compound	I	II	III	IV	v	VI	VII	VIII	IX
X	S	0	S	0	s	0	S	0	S
R	н	Me	Me	H	н	Me	Me	H	H
R ₂	H	Н	H	Me	Me	H	H	Me	Me
R ₃	H	H	H	H	Ħ	Me	Me	Me	Me

The starting compounds were used as a solvent in each case. The data for all these reactions are summarized in Table 1.

Compound	Attack	Concentration of	Temperature	Time	Yield
	in position	peroxide (mols)	°c	hrs.	%
I	2	1	80	6	10
II	5	0.7	60	6	3.5
III	5	1	80	4	4
IV	2	0.7	60	6	10
	5				trace
V	2	1	80	4	9
	5				4.5
VI	3	0.7	80	4	trace
VII	3	1	80	4	trace
VIII	5	0.7	80	4	15
IX	5	1	80	4	21

Table 1.

The residue, after the most of unchanged starting compound had been distilled off through a 5-plate column, was analysed gas-chromatographically (Carbowax 20M, Neopentylglycolsebacate). All products were identified by the comparison of the GLC retention times and mass spectral data with those of authentic samples⁹. The products of radical attack at the methyl group were synthetised too, but not even a trace of these compounds could be detected in the reaction mixtures. Table 2 summarizes the theoretical and experimental data about the reactivity of the compounds studied. Our data are in very good agreement.

Tab	le	2.
-----	----	----

Compound	Relative Reactivity of Position ^a				
	Theoretical	Ex	erimental		
	based on Sr	NBS ^{3,10}	Nethylation (this article)		
I	2 > 3	2	2		
II and III	5 > 3 > 4	2a > 5	5		
IV and V	2 7 5 7 4	3a > 2 > 5	2 7 5		
VI and VII	3=4 > 2a=5a	2 a= 5a	3=4		
VIIIand IX	5 > 2 > 2a > 4a		5		

a) a denotes attack on a methyl group at the ring position indicated

b) The radical superdelocalisabilities (S_r) were calculated using the simple HMO method¹ The discrepancies with respect to the reaction of the studied compounds with NBS are

due to the fact that this reaction does not proceed through the pure radical chain mechanism.

REFERENCES

- 1. J.Srogl.M.Janda.V.Skála, P.Trška, M.Ryska and I.Stibor, Coll.Czech.Chem.Commun., In press.
- 2. M.Janda, J. Šrogl, V. Skála, P. Trška, I. Stibor and P. Vopatrná, ibid., In press.
- L.Horner and E.H.Winkelman, Newer Methods of Preparative Organic Chemistry, Academic Press, 1964, New York - London, p. 182.
- 4. C.C.Price and H.Morita, J.Am.Chem.Soc., 75, 3686 (1953).
- 5. M.Levy and M.Schwarc, J.Chem. Phys., 22, 1621 (1954)
- 6. M.Levy and M.Schwarc, J.Am.Chem.Soc., 77, 1949 (1955)
- 7. R.P.Backley, F.Leawitt and M.Schwarc, J.Am. Chem.Soc., 78, 5557 (1956).
- C.K.Ingold, Structure and Mechanism in Organic Chemistry, Second Edition, Cornell University Press, 1969, London, p. 254, 406.
- 9. M.Janda, J.Srogl, I.Stibor, M.Němec and P.Vopatrná, Synthesis, 1972, 545.
- 10.J.D.Prugh, A.C.Mutrie and W.C.McCarthy, J.Org.Chem., 29, 1991 (1964).